IMS Wf y SC Ultra

SIMS de baja energía de alto rendimiento para aplicaciones avanzadas de semiconductores
El IMS Wf y SC Ultra se han diseñado específicamente para satisfacer las crecientes necesidades de mediciones de SIMS dinámicas en semiconductores avanzados. Ofreciendo una amplia gama de energías de impacto (100 eV a 10 keV) sin comprometer la resolución de masa y la densidad del haz primario, aseguran un rendimiento analítico inigualable con un alto rendimiento para las aplicaciones más desafiantes: implantes extra de alta energía y superficial, óxidos de nitruro ultra compactos, compuertas de metal alto en k, capas dopadas SiGe, estructuras Si:C:P, dispositivos PV y LED, grafeno, etc.
  • Descripción general de producto +


    De perfiles de profundidad estándar a ultra superficiales
    Un primer requisito para el análisis de semiconductores avanzados es la optimización de las condiciones analíticas SIMS para perfiles de profundidad ultra superficiales sin abandonar las aplicaciones de perfiles de profundidad estándar. Por lo tanto, CAMECA ha desarrollado un diseño único de instrumento SIMS capaz de pulverizar muestras con una amplia gama de energías de impacto: desde alta energía (rango keV) para estructuras gruesas hasta energía ultrabaja (? 150 eV) para estructuras ultradelgadas. Esta flexibilidad en la elección de energía de impacto está disponible para diferentes condiciones de pulverización bien controladas (especie, ángulo de incidencia, etc.).

    El IMS Wf y SC Ultra de CAMECA son los únicos instrumentos SIMS que ofrecen tal capacidad de Energía de Impacto EXtremadamente Baja (EXLIE) sin comprometer la alta resolución de masa y la alta transmisión.

    Alto nivel de automatización
    A medida que la técnica SIMS madura, los usuarios desean reducir la experiencia requerida para lograr una alta reproducibilidad y mediciones de alta precisión. La tendencia es claramente hacia el análisis automático desatendido. El IMS Wf y SC Ultra de CAMECA enfrentan este desafío con la automatización de la computadora asegurando un control total de todos los parámetros analíticos (receta de análisis, configuración del instrumento, etc.).

    El sistema de esclusa de aire, la etapa de muestra y la cámara de análisis se han optimizado para acomodar discos de hasta 300 mm (modelo IMS Wf) y para cargar un gran número de muestras en un solo lote: hasta 100 en el modelo IMS Wf que también ofrece una transferencia totalmente motorizada entre la esclusa de aire y la cámara de análisis.

    Gracias a su alto nivel de automatización, el IMS Wf y SC Ultra realizan un perfilado rápido y profundo con un rendimiento de muestra optimizado y una excelente estabilidad de medición, lo que garantiza una productividad sin precedentes de la herramienta SIMS.
  • Vea lo que puede hacer el IMS Wf y el SC Ultra +

  • Documentación +

  • Publicaciones científicas +


    Below is a selection of research articles by users of CAMECA IMS Wf and SC Ultra

    You are welcome to send us any missing references, pdf and supplements!
    Please email cameca.info@ametek.com.

    Oxygen out-diffusion and compositional changes in zinc oxide during ytterbium ions bombardment.
    Paweł Piotr Michałowski Jarosław Gaca Marek Wójcik Andrzej Turos. Nanotechnology 29, 425710 (2018)
    http://iopscience.iop.org/article/10.1088/1361-6528/aad881

    Thermally activated double-carrier transport in epitaxial graphene on vanadium-compensated 6H-SiC as revealed by Hall effect measurements. Tymoteusz Ciuk, Andrzej Kozlowski, Paweł Piotr Michałowski, Wawrzyniec Kaszub, Michal Kozubal, Zbigniew Rekuc, Jaroslaw Podgorski, Beata Stanczyk, Krystyna Przyborowska, Iwona Jozwik, Andrzej Kowalik, Pawel Kaminski. Carbon 139, 776-781 (2018)
    https://www.sciencedirect.com/science/article/pii/S0008622318306973

    The role of hydrogen in carbon incorporation and surface roughness of MOCVD-grown thin boron nitride. Piotr A. Caban, Dominika Teklinska, Paweł P. Michałowski, Jaroslaw Gaca, Marek Wojcik, Justyna Grzonka, Pawel Ciepielewski, Malgorzata Mozdzonek, Jacek M. Baranowski. Journal of Crystal Growth 498, 71-76 (2018)
    https://www.sciencedirect.com/science/article/pii/S0022024818302756

    Oxygen-induced high diffusion rate of magnesium dopants in GaN/AlGaN based UV LED heterostructures. Paweł Piotr Michałowski, Sebastian Złotnik, Jakub Sitek, Krzysztof Rosińskia and Mariusz Rudzińskia. Physical Chemistry Chemical Physics 20, 13890-13895 (2018)
    http://pubs.rsc.org/en/Content/ArticleLanding/2018/CP/C8CP01470A

    Self-organized multi-layered graphene–boron-doped diamond hybrid nanowalls for high-performance electron emission devices. Kamatchi Jothiramalingam Sankaran, Mateusz Ficek, Srinivasu Kunuku, Kalpataru Panda, Chien-Jui Yeh, Jeong Young Park, Miroslaw Sawczak, Paweł Piotr Michałowski, Keh-Chyang Leou, Robert Bogdanowicz, I-Nan Lin and Ken Haenen. Nanoscale 10, 1345-1355 (2018)
    http://pubs.rsc.org/en/content/articlelanding/2018/nr/c7nr06774g

    Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of Graphene
    . Paweł Piotr Michałowski, Iwona Pasternak, Paweł Ciepielewski, Francisco Guinea and Włodek Strupiński. Nanotechnology 29, 305302 (2018)
    http://iopscience.iop.org/article/10.1088/1361-6528/aac307

    Contamination-free Ge-based graphene as revealed by graphene enhanced secondary ion mass spectrometry (GESIMS). Paweł Piotr Michałowski, Iwona Pasternak and Włodek Strupiński. Nanotechnology 29, 015702 (2018).
    http://iopscience.iop.org/article/10.1088/1361-6528/aa98ed

    Influence of hydrogen intercalation on graphene/Ge(0 0 1)/Si(0 0 1) interface. Justyna Grzonka, Iw ona Pasternak, Paweł Piotr Michałowski, Valery Kolkovsky and Włodek Strupiński. Applied Surface Science 447, 582-586 (2018).
    https://www.sciencedirect.com/science/article/pii/S0169433218309838

    Characterization of the superlattice region of a quantum cascade laser by secondary ion mass spectrometry. Paweł Piotr Michałowski, Piotr Gutowski, Dorota Pierścińska, Kamil Pierściński, Maciej Bugajski and  Włodek Strupińskiac. Nanoscale 9, 17571-17575 (2017).
    http://pubs.rsc.org/en/Content/ArticleLanding/2017/NR/C7NR06401B

    Graphene Enhanced Secondary Ion Mass Spectrometry (GESIMS). Paweł Piotr Michałowski, Wawrzyniec Kaszub, Iwona Pasternak and Włodek Strupiński. Scientific Reports 7, 7479 (2017).
    https://www.nature.com/articles/s41598-017-07984-1

    Reproducibility of implanted dosage measurement with CAMECA Wf. Kian Kok Ong, Yun Wang and Zhiqiang Mo. IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits (2017).
    DOI: 10.1109/IPFA.2017.8060158

    Investigation of Cs+ bombardment effects in ultra-thin oxynitride gate dielectrics characterization by DSIMS. Yun Wang, Kian Kok Ong, Zhi Qiang Mo, Han Wei Teo, Si Ping Zhao. IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits (2017).
    DOI: 10.1109/IPFA.2017.8060216


    Secondary ion mass spectroscopy depth profiling of hydrogen-intercalated graphene on SiC.
    Pawel Piotr Michalowski, Wawrzyniec Kaszub, Alexandre Merkulov and Wlodek Strupinski. Appl. Phys. Lett. 109, 011904 (2016).
    http://scitation.aip.org/content/aip/journal/apl/109/1/10.1063/1.4958144

    SIMS depth profiling and topography studies of repetitive III–V trenches under low energy oxygen ion beam sputtering. Viktoriia Gorbenko, Franck Bassani, Alexandre Merkulov, Thierry Baron, Mickael Martin, Sylvain David and Jean-Paul Barnes. J. Vac. Sci. Technol. B 34, 03H131 (2016).
    http://dx.doi.org/10.1116/1.4944632 

    Kr implantation into heavy ion irradiated monolithic UeMo/Al systems: SIMS and SEM investigations. T. Zweifel, N. Valle, C. Grygiel, I. Monnet, L. Beck, W. Petry (2016), Journal of Nuclear Materials, Volume 470, Pages 251-257. doi:10.1016/j.jnucmat.2015.12.039.

    Ion beam characterizations of plasma immersion ion implants for advanced nanoelectronic applications. M. Veillerot, F. Mazen, N. Payen, J.P. Barnes, F. Pierre (2014), SIMS Europe 2014, September 7-9, 2014.

    Characterization of arsenic PIII implants in FinFETs by LEXES, SIMS and STEM-EDX. Kim-Anh Bui-Thi Meura, Frank Torregrosa, Anne-Sophie Robbes, Seoyoun Choi, Alexandre Merkulov, Mona P. Moret, Julian Duchaine, Naoto Horiguchi, Letian Li, Christoph Mitterbauer (2014), 20th International Conference on Ion Implantation Technology (IIT), 2014. DOI: 10.1109/IIT.2014.6940011.

    Cesium/Xenon dual beam sputtering in a Cameca instrument.
    R. Pureti, B.Douhard, D.Joris, A.Merkulov and W.Vandervorst. Surface and Interface Analysis. Volume 46, Issue S1, pages 25–30, November 2014

    Si- useful yields measured in Si, SiC, Si3N4 and SiO2: comparison between the Strong Matter technique and SIMS. B.Kasel and T.Wirtz. Surface and Interface Analysis. Volume 46, Issue S1, pages 39–42, November 2014 

    Unravelling the secrets of Cs controlled secondary ion formation: Evidence of the dominance of site specific surface chemistry, alloying and ionic bonding. K. Wittmaack. Surface Science Reports. Volumn 68, Issue 1, pages 108–230, 1 March 2013

    The secondary ions emission from Si under low-energy Cs bombardment in a presence of oxygen. A. Merkulov. Surface and Interface Analysis. Volume 45, Issue 1, pages 90–92, January 2013

    Application of extra-low impact energy SIMS and data reduction algorithm to USJ profiling. D. Kouzminov, A. Merkulov, E. Arevalo, H.-J. Grossmann. Surface and Interface Analysis. Volume 45, Issue 1, pages 345–347, January 2013 

    Application of extra-low impact energy SIMS and data reduction algorithm to USJ profiling. D. Kouzminov, A. Merkulov, E. Arevalo, H.-J. Grossmann. Surf. and Interface Analysis, 5 Aug 2012, DOI: 10.1002/sia.5138.

    The secondary ions emission from Si under low-energy Cs bombardment in a presence of oxygen. A. Merkulov. Surf. and Interface Analysis, 5 Aug 2012, DOI: 10.1002/sia.5132 

    Experimental studies of dose retention and activation in fin field-effect-transistor-based structures. Jay Mody, Ray Duffy, Pierre Eyben, Jozefien Goossens, Alain Moussa, Wouter Polspoel, Bart Berghmans, M. J. H. van Dal, B. J. Pawlak, M. Kaiser, R. G. R. Weemaes, and Wilfried Vandervorst (2010), Journal of Vacuum Science & Technology B, Volume 28, Issue 1. C1H5. doi: 10.1116/1.3269755.

    Sputtering behavior and evolution of depth resolution upon low energy ion irradiation of GaAs.
    M.J.P. Hopstaken, M.S. Gordon, D. Pfeiffer, D.K. Sadana, T. Topuria, P.M. Rice, C. Gerl, M. Richter, C. Marchiori. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. Volume 28, Issue 6, 1287, 18 November 2010

    Advanced SIMS quantification in the first few nm of B, P, and As Ultra Shallow Implants.
    A.Merkulov, P.Peres, J.Choi, F.Horreard, H-U.Ehrke, N. Loibl, M.Schuhmacher, Journal of Vacuum Science & Technology B. 28, C1C48 (2010) ; doi:10.1116/1.3225588

    Chemical Erosion and Transport: Transport and Deposition of First Wall Impurities. Francesco Ghezzi (2009), CONSIGLIO NAZIONALE DELLE RICERCHE. TASK PWI-08-TA-06. 

    Long-term Reproducibility of Relative Sensitivity Factors Obtained with CAMECA Wf. D. Gui, ZX Xing, YH Huang, ZQ Mo, YN Hua, SP Zhao, LZ Cha. Applied Surface Science, Volume 255, Issue 4, Pages 1427–1429 (2008)

    EXLE-SIMS: Dramatically Enhanced Accuracy for Dose Loss Metrology. W.Vandervorst, R.Vos, A.J.Salima, A.Merkulov, K. Nakajimac and K.Kimura. Proceedings of the 17th International Conference on Ion Implentation Technology, IIT 2008, Monterey, CA, USA. AIP Conf. Proc. Vol. 1066 (2008), 109-112

    Semiconductor profiling with sub-nm resolution: challenges and solutions. W.Vandervorst, App. Surf. Science 255 (2008) 805

    Roughness development in the depth profiling with 500eV O2 beam with the combination of oxygen flooding and sample rotation. D. Gui, Z.X.Xing, Y.H.Huang, Z.Q.Mo, Y.N.Hua, S.P.Zhao and L.Z.Cha, App. Surf. Science 255 (2008) 1433

    Depth profiling of ultra-thin oxynitride date dielectrics by using MCs2+ technique. D.Gui, Z.X.Xing, Y.H.Huang, Z.Q.Mo, Y.N.Hua, S.P.Zhao and L.Z.Cha (2008), App. Surf. Science, Volume 255, Issue 4, Pages 1437-1439. doi:10.1016/j.apsusc.2008.06.047.

    Impurity measurement in silicon with D-SIMS and atom probe tomography. P.Ronsheim, App. Surf. Science 255 (2008) 1547. 

    SIMS depth profiling of boron ultra shallow junctions using oblique O2 beam down to 150eV. M.Juhel, F.Laugier, D.Delille,C.Wyon, L.F.T.Kwakman and M.Hopstaken, App. Surf. Science 252 (2006), 7211

    Boron ultra low energy SIMS depth profiling improved by rotating stage. M.Bersani, D.Guibertoni, at al, App. Surf. Science 252 (2006) 7315

    Comparison between SIMS and MEIS techniques for the characterization of ultra shallow arsenic implants. M.Bersani, D.Guibertoni, et al, App. Surf. Science 252 (2006) 7214

    SIMS Depth Profiling of SiGe:C structures in test pattern areas using low energy Cs with a Cameca Wf , M.Juhel, F. Laugier, App. Surf. Science 231-232 (2004) 698

    Sputtered depth scales of multi-layered samples with in situ laser interferometry: arsenic diffusion in Si/SiGe layers. P.A.Ronsheim, R.Loesing and A.Mada, App. Surf. Science 231-232 (2004) 762

    Short-term and long-term RSF repeatability for CAMECA SC Ultra SIMS measurements. M. Barozzi, D. Giubertoni, M. Anderle and M. Bersani. App. Surf. Science 231-232 (2004) 768-771

    Toward accurate in-depth profiling of As and P ultra-shallow implants by SIMS. A. Merkulov, E. de Chambost, M. Schuhmacher and P. Peres. Oral presentation at SIMS XIV, San Diego, USA, Sep. 2003. Applied Surface Science 231–232 (2004) 640–644

    Accurate on-line depth calibration with laser interferometer during SIMS profiling experiment on the CAMECA IMS Wf instrument. O. Merkulova, A. Merkulov, M. Schuhmacher, and E. de Chambost. SIMS XIV, San Diego, USA, Sep. 2003. Applied Surface Science 231–232 (2004) 954–958

    Latest developments for the CAMECA ULE-SIMS instruments: IMS Wf and SC Ultra. E. de Chambost, A. Merkulov, P. Peres, B. Rasser, M. Schuhmacher. Poster for SIMS XIV, San Diego, USA, Sept 2003. Applied Surface Science 231–232 (2004) 949–953

  • Some of our users +

    Below a small selection of IMS Wf and SC Ultra users. Many actors in the semiconductor industry wish to remain confidential and cannot appear here.

    ITC-irst (Fondazione Bruno Kessler), divisione FSC, Italy
    The FSC division led by Mariano Anderle develops and applies new surface analytical methodologies on last generation microelectronic devices and materials. It is involved in long term collaborations with several leading microelectronics companies. Masterpiece of the Materials and Analysis for Micro-Electronics lab under the direction of Massimo Bersani is a CAMECA IMS SC Ultra.

    CNT, Fraunhofer-Center Nanoelektronische Technologien, Dresden, Germany
    This public-private partnership between the Fraunhofer Gesellschaft and leading semiconductor manufacturers aims at developing new process technologies for nanoelectronics. It is equiped with state-of the-art instruments for materials charactrization, among which a CAMECA IMS Wf.

    Science and Analysis of Materials (SAM), Luxemburg
    A departement of Gabriel Lippmann public research center, SAM started its activities in 1992. Both a fundamental and applied research facility as well as an analytical service laboratory, it provides assistance to more than 100 industrial and academic partners worldwide. It is equipped with a CAMECA SC Ultra and a NanoSIMS 50.

  • Software +

    • WinCurve dataprocessing sofware
      WinCurve

      Desarrollado específicamente para instrumentos SIMS de CAMECA, WinCurve ofrece potentes capacidades de procesamiento y visualización de datos en un entorno fácil de usar.

      Seguir leyendo

    • WinImage Software
      WinImage II

      Desarrollado específicamente para los instrumentos SIMS de CAMECA, WinImage II ofrece potentes capacidades de visualización, procesamiento e impresión de imágenes en un entorno de Windows? para PC Entorno.

      Seguir leyendo

    • APM Software
      APM

      La medición automática de partículas (APM) es una herramienta de software de CAMECA que permite el filtrado rápido de millones de partículas, la detección de partículas y la caracterización isotópica.

      Seguir leyendo

  • Kits de actualización +

    Automation & Software - Sources - Airlock - Specimen Chamber

    Automation & Software

    PC-Automation (Wf/SCU)
    PC-Automation system to replace SUN system, allows full automation & unattended operation and greatly improves ease of use.
    Please note that most of the upgrade kits listed below can only be installed on IMS Wf  and SC Ultra instruments equipped with PC-Automation.

    Post-treatment (Wf/SCU)
    PC station for off-line data treatement (CAMECA software not included).

    Desk control duplication (Wf/SCU)
    Additional PC, keyboard, CAMECA keypad, screens... ensuring optimized operation comfort when the lab is split in two parts.

    WinCurve software (Wf/SCU)
    Offers powerful SIMS data processing & graphing capabilities together with easy report creation functionalities.

    WinImage Software (Wf/SCU)
    Offers powerful SIMS image processing functions, available in Standard or Extended version.

    Remote monitoring
    (Wf/SCU)
    Real Time Display software licence providing remote access to all instrumental parameters, thus allowing the operator to remotely tune and run the instrument from his/her own PC.

    Top of page

    Sources

    Low energy cesium ion source (Wf/SCU)
    With this new high brightness cesium ion source, the IMS Wf/SCU can now perform Extremely Low Impact Depth Profiling and analyse ultra thin layers with nanometer depth resolution.

    High brightness RF plasma oxygen ion source (Wf/SCU)
    Compared to conventional DUO-plasmatron, the RF plasma source allows substantial performance improvements using ultra low energy O2 primary beam.

    Specimen Chamber

    Motorized Z-movement stage (Wf/SCU)
    Replaces the piezo-stage movement

    Turbo Detection (Wf/SCU)
    Turbomolecular pump to replace the existing ionic pump. Improves vacuum in the detection system.

    Top of page